Patient Pascal Najadi Geburtsdatum 20.08.1967 Probennahme 26.02.2023 Probeneingang 28.02.2023 Untersuchungsende 16.03.2023

Validiert von Prof. Dr. Brigitte König Ärztliche Leitung Prof. Dr. Gerhard Jorch

MMD GmbH & Co. KG | Breiter Weg 10 a | 39104 Magdeburg

Dr. med. Ronald Weikl Wittgasse 9 94032 Passau

MIKROBIOLOGISCHER BEFUND

Untersuchungsmaterial: Heparin-Blut

Auftrag: Quantitative Nachweis von Spike-Protein in

Plasma/Serum, Nachweis von impf-mRNA in Immunzellen (PBMC)

Spikeproteins in Plasma/Serum	POSITIV 183,5 pg/ml
Impf-mRNA in Immunzellen (PBMC)	NEGATIV

Interpretation:

Nachweis des SARS-CoV-2 Spike-Protein

Allgemeiner Hinweis:

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), auch bekannt als 2019-nCoV (2019 Novel Coronavirus), ist ein Virus, das Krankheiten verursacht, die von gewöhnlichen Erkältungssymptomen bis hin zu schweren Folgen wie Tod und Atemnot reichen. Das SARS-CoV2-Spike (S)-Protein spielt die wichtigste Rolle bei der Anheftung, Fusion und dem Eintritt von Viren und dient als Ziel für die Entwicklung von Antikörpern, Eintrittshemmern und Impfstoffen. Die Spike-Protein-Rezeptor-Bindungsdomäne (RBD, S-RBD) in SARS-CoV-2 Spike-Protein bindet stark an Angiotensin-Converting-Enzym-2-Rezeptoren (ACE2) von Menschen.

Die analytische Sensitivität des Spikeprotein-Nachweises liegt bei 4.5 pg/mL

Es wird das Gesamt-Spikeprotein (gebunden und ungebunden) bestimmt.

MMD GmbH & Co. KG Wester Weg 10 a 39104 Magdeburg

Brigille Plonis

Patient Pascal Najadi Geburtsdatum 20.08.1967 Probennahme 27.02.2023 Probeneingang 28.02.2023 Untersuchungsende 28.02.2023 Endbefund 28.02.2023 MMD %

Validiert von Prof. Dr. Brigitte König Ärztliche Leitung Prof. Dr. Gerhard Jorch

MMD GmbH & Co. KG | Breiter Weg 10 a | 39104 Magdeburg

Praxis Dr. Ronald Weikl

Wittgasse 9 94032 Passau

BEFUND

Untersuchungsmaterial: Blut im CPDA-Röhrchen

Auftrag: BHI-Premium: BHI Supplement / PBMC

Zusammenfassung

Basiswerte der peripheren Blutleukozyten (PBMC)

Einzelparameter-Ergebnisse	Einheiten	Werte
Verhältnis mtDNA:nDNA	Anzahl mitochondrialer DNA	278
	Kopien auf 1 Kopie nukleäre (Kern) -DNA	
Mitochondriale 4977 Deletionsmutante (mt4977del)	Anzahl Kopien nicht mutierter mtDNA auf 1 Kopie mt4977del	8,21x10 ⁸ :1

Parameter			
Gesamt-ATP	fmol/Zelle pmol/10 ⁵ PBMC	1,03 102,67	
Mitochondriales ATP	fmol/Zelle pmol/10 ⁵ PBMC	0,89 89,25	
Glykolytisches ATP	fmol/Zelle pmol/10 ⁵ PBMC	0,84 83,73	
Reserve ATP	fmol/Zelle pmol/10 ⁵ PBMC	0,71 70,93	

Parameter		Referenzwerte			
	1	2	3	4	5
Gesamt-ATP	<0,8	>0,8	>1,0	>1,2	1,4 - 1,6
fmol/Zelle	sehr niedrig	niedrig	ausreichend	hoch	sehr hoch

B. hmij

Patient Pascal Najadi Geburtsdatum 20.08.1967 Probennahme 27.02.2023 Probeneingang 28.02.2023 Untersuchungsende 28.02.2023 Endbefund 28.02.2023 Validiert von Prof. Dr. Brigitte König

Ärztliche Leitung Prof. Dr. Gerhard Jorch

Interpretation "Basiswerte der peripheren Blutleukozyten"

- 1. Das Verhältnis mtDNA:nDNA ist als gering erhöht einzustufen (Referenzbereich 200 ± 50).
- 2. Die mitochondriale Deletionsmutante mt4977bp ist erhöht nachweisbar.
- 3. Der gesamt-ATP Gehalt in Ruhe befindet sich deutlich unterhalb des Idealbereichs (Referenzbereich 1,4-1,6 pmol/10⁵ PBMC)
- 4. Die mögliche mitochondriale ATP Bildung (in Ruhe) befindet sich im Idealbereichs (Referenzbereich > 80% des Gesamt-ATPs), ist insgesamt deutlich zu niedrig.
- 5. Die mögliche glykolytische ATP Bildung (in Ruhe) befindet sich innerhalb des Idealbereich (Referenzbereich >80% des Gesamt-ATP), ist insgesamt deutlich zu niedrig
- 6. Das Reserve-ATP befindet sich gering oberhalb des Idealbereich (Referenzbereich <50% des gesamt-ATP) und deutet auf eine anaerobe Stoffwechsellage hin.

 Patient
 Pascal Najadi

 Geburtsdatum
 20.08.1967

 Probennahme
 27.02.2023

 Probeneingang
 28.02.2023

 Untersuchungsende
 28.02.2023

 Endbefund
 28.02.2023

Validiert von Prof. Dr. Brigitte König Ärztliche Leitung Prof. Dr. Gerhard Jorch

MMD GmbH & Co. KG | Breiter Weg 10 a | 39104 Magdeburg

Praxis Dr. Ronald Weikl

Wittgasse 9 94032 Passau

BEFUND

Untersuchungsmaterial: Blut im CPDA-Röhrchen

Auftrag: BHI-Premium:

Bioenergetischer Gesundheitsindex / PBMC

Zusammenfassung

	1	T
	Persönliche Wert	Zielwert (optimal)
Bioenergetischer Gesundheitsindex (BHI)	1,38	>2,5
Mitochondriale Bioenergetik		×=====
Kopplungseffizienz in %	77,78	100
Reserveatmungskapazität in %	294,43	>400
Zelluläres Sauerstoffverbrauchsprofil		
Anteil <mark>nicht-mitochondriale Atmung zur Gesamtatmung in %</mark>	29,91	<10
Anteil des Protonenlecks zur Gesamtatmung in %	15,55	
Anteil Atmung für mitochondriale ATP-Gewinnung in %	54,55	>90
ATP-Umsatzrate (mitochondriale Sauerstoffver	wertung)	
ATP-Grundumsatz in %	19,94	<20
ATP-Reserve in %	80,06	>80
Mögliche maximale Sauerstoffverbrauchsrate in pmol Sauerstoff/min	136,48	>300
Zellulärer Energie-Phänotyp		
în Ruhe	ruhend	ruhend
Bei Energieanforderung	energetisch	Energetisch/aerok
Metabolisches Potenzial in % - Mitochondrien-	303,41	>350
Metabolisches Potenzial in % -Glykolyse-	215,03	>350
Sauerstoffverbrauch/Glykolyse bei Energieanforderung	Moderate Bevorzugung der Mitochondrien	

optimal	Leicht erhöht	Moderat erhöht /	Stark erhöht /	Sehr stark erhöht /
optima	/erniedrigt	erniedrigt	erniedrigt	erniedrigt

Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte König
Ärztliche Leitung	Prof. Dr. Gerhard Jorch

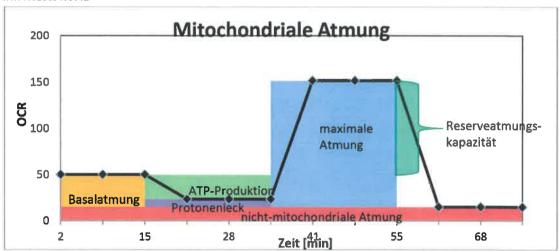
Interpretation

	Nicht vorhanden	leicht	moderat	deutlich	stark
mitochondriale Dysfunktion			V		
Zelluläres Ungleichgewicht			√		
Hinweise auf					
erhöhte Bildung von Sauerstoffradikalen in der Zelle		Nein √ Ja	Mangelnde ATP Bildung bei Energieanforderung		Nei √ J
erhöhte Bildung von Sauerstoffradikalen in den Mitochondrien		Nein √ Ja			
Funktionseinschränkung der mitochondrialen Atmungskette		Nein √ Ja			
Verminderte Anzahl an intakten Mitochondrien		Nein √ Ja	chronische Entzündung, Autoimmunerkrankung		Neii √ J:

Patient Pascal Najadi Geburtsdatum 20.08.1967 Probennahme 27.02.2023 Probeneingang 28.02.2023 Untersuchungsende 28.02.2023 Endbefund 28.02.2023

Validiert von Prof. Dr. Brigitte König Ärztliche Leitung Prof. Dr. Gerhard Jorch

ERGEBNISSE IM DETAIL


BIOENERGETISCHER GESUNDHEITSINDEX (BHI)

Der BHI dient als ein sensibler Indikator für die Reaktion der Immunzellen (PBMC) auf oxidativen Stress und für die wechselnden metabolischen Programme, die ihre Rolle bei Entzündungen, Abwehr und Immungesundheit zuordnen. Der BHI ist ebenfalls ein Indikator für die aktuelle "Gesundheit" der Zelle. Er setzt sich interaktiv aus den nachfolgend beschriebenen Parametern zusammen.

IHR ERGEBNIS

Bioenergetischer Gesundheitsindex (BHI)		Deutlich erniedrigt	
Parameter	Beurteilung	Referenzwerte	Ergebnis
Bioenergetischer Gesundheitsindex (BHI)	optimal >2,5	>2,5	
	Leicht erniedrigt	2,0-2,5	
	Moderat erniedrigt	1,5-2,0	
	Deutlich erniedrigt	1,0-1,5	1,38
	Stark erniedrigt	<1,0	

IHR MESSPROFIL

Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte König
Ärztliche Leitung	Prof. Dr. Gerhard Jorch

IHR ERGEBNIS-PROFIL - BIOENERGETISCHER GESUNDHEITSINDEX

Kopplungseffizienz in %	Deutlich erniedrigt
Anteil nicht mitochondriale Atmung zur Gesamtatmung in %	Moderat erhöht
Reserveatmungskapazität in %	Moderat erniedrigt

KOPPLUNGSEFFIZIENZ

Die Kopplungseffizienz ist ein Maß für die Umwandlung von Sauerstoff in die Energiewährung "ATP". Ursache einer verringerten Kopplungseffizienz ist ein Protonenleck (siehe S.6 unter Sauerstoffverbrauchsprofil).

Parameter	Beurteilung	Referenzwerte in %	Ergebnis in %
Kopplungseffizienz in %	optimal	99-100	
	Leicht erniedrigt	95-99	
	Moderat erniedrigt	90-95	
	Deutlich erniedrigt	70-90	77,78
	Stark erniedrigt	<70	

Interpretation Ihres Ergebnisses:

Die Kopplungseffizienz ist deutlich erniedrigt.

NICHT MITOCHONDRIALE ATMUNG

Dieser Parameter ist ein Index der Sauerstoff verbrauchenden Prozesse außerhalb von den Mitochondrien, ist in den Immunzellen in der Regel erhöht in Anwesenheit von Stressoren, einschließlich ROS und RNS (pro-oxidativ), und wirkt sich negativ auf die bioenergetische Gesundheit (BHI) aus.

Parameter	Beurteilung	Referenzwerte in %	Ergebnis in %
Anteil nicht mitochondriale Atmung zur Gesamtatmung in %	optimal	0-10	
	Leicht erhöht	10-20	
	Moderat erhöht	20-30	29,91
	Stark erhöht	30-50	
	Sehr stark erhöht	>50	

Interpretation Ihres Ergebnisses:

Eine moderat erhöhte nicht-mitochondriale Sauerstoffverbrauchsrate wirkt sich negativ auf den BHI aus. Weitere Erläuterungen finden sich unter dem Kapitel "SAUERSTOFFVERBRAUCHSPROFIL".

Empfehlung

Siehe Kapitel "SAUERSTOFFVERBRAUCHSPROFIL".

B. Romij

Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte König
Ärztliche Leitung	Prof. Dr. Gerhard Jorch

RESERVEATMUNGSKAPAZITÄT

Die Reserveatmungskapazität zeigt an, inwieweit die vorhandenen Mitochondrien weiteren Sauerstoff für die Energiegewinnung verwenden können. Eine verringerte Reserveatmungskapazität kann ihre Ursache haben in a) mangelnde Verwertung von Brennstoffen (Glukose, Fettsäuren); b) einem erhöhten Ruhestoffwechsel durch ROS und RNS; c) mangelnde Intaktheit der Komplexe der Elektronentransportkette; d) wechselnde Stoffwechsellage durch z. B. durch Aufgabenänderung der Immunzellen (z. B. Infektion (viral, bakteriell), Tumorabwehr, Autoimmunerkrankung).

Parameter	Beurteilung	Referenzwerte in %	Ergebnis in %
Reserveatmungskapazität in %	optimal	>400	
	Leicht erniedrigt	300-400	
	Moderat erniedrigt	250-300	294,43
	Deutlich erniedrigt	200-250	
	Stark erniedrigt	<200	

Interpretation Ihres Ergebnisses:

Die Reservekapazität der vorhandenen Mitochondrien ist moderat erniedrigt. In der Zusammenschau der Ergebnisse sind folgende Ursachen in Betracht zu ziehen: a) mangelnde Verwertung von Brennstoffen (Glukose, Fettsäuren); b) ein erhöhter Ruhestoffwechsel durch ROS und RNS; c) eine unzureichende Versorgung der Immunzellen mit notwendigen Mineralstoffen, Vitaminen usw.; d) Defekte in der Elektronentransportkette.

Empfehlung

Bestimmung der Mitochondrienmutationen, die die ATP-Generierung beeinflussen (z. B. common deletion mt4977bp; Vollsequenzierung).

Bestimmung von mitochondrialer Verwertung der Brennstoffe "Fettsäuren" und "Glukose".

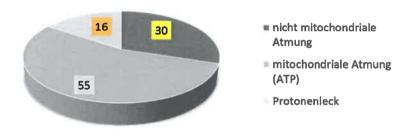
Bestimmung von oxidierten Lipiden, Proteinen, nukleärer und mitochondrialer DNA in den Immunzellen zur Abschätzung des bereits erfolgten Schadens und zum gezielten Einsatz von Antioxidantien (siehe Kapitel "SAUERSTOFFVERBRAUCHSPROFIL")..

Bestimmung der intrazellulären reaktiven Sauerstoffmetaboliten zum gezielten Einsatz von Antioxidantien und/oder Therapeutika (siehe Kapitel "SAUERSTOFFVERBRAUCHSPROFIL").

Patient Pascal Najadi
Geburtsdatum 20.08.1967
Probennahme 27.02.2023
Probeneingang 28.02.2023
Untersuchungsende 28.02.2023
Endbefund 28.02.2023

Validiert von Prof. Dr. Brigitte König Ärztliche Leitung Prof. Dr. Gerhard Jorch

SAUERSTOFFVERBRAUCHSPROFIL


Die einzelnen Parameter des Sauerstoffverbrauchsprofils der (ruhenden) Immunzellen geben eine Übersicht über die Verbraucher des zur Zelle angelieferten Sauerstoffs. Der Sauerstoff sollte bei den untersuchten Immunzellen (periphere Blutleukozyten) überwiegend für die mitochondriale ATP-Gewinnung benutzt werden. Der Anteil an Sauerstoff, der in den Mitochondrien nicht zur ATP-Synthese benutzt wird, macht das Protonenleck aus. Ursachen eines Protonenlecks sind z. B. a) erhöhte Konzentrationen an schädlichen freien Radikalen; b) ein Mangel an Redoxäquivalenten; c) Inhibitoren der ATPase; d) eine "nicht-optimale" Fettsäurezusammensetzung der Mitochondrien.

Der Sauerstoffverbrauch außerhalb der Mitochondrien besteht mindestens aus zwei Komponenten: a) dem Sauerstoffverbrauch an der Zelloberfläche; b) dem basalem Sauerstoffverbrauch für prooxidative Vorgänge (z.B. Flavoenzyme) und der Aufrechterhaltung verschiedener Membranpumpen.

IHR ERGEBNIS

Anteil am Sauerstoffverbrauch in %

Parameter	Beurteilung	Referenzwerte in %	Ergebnis in %
Anteil nicht mitochondriale Atmung zur	optimal	0-10	
Gesamtatmung in %	Leicht erhöht	10-20	
•	Moderat erhöht	20-30	29,91
	Stark erhöht	30-50	
	Sehr stark erhöht	>50	

Interpretation ihres Ergebnisses

Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte Köni
Ärztliche Leitung	Prof Dr Gerhard lord

Die Immunzellen verwenden nur 55 % des Sauerstoffs direkt für die mitochondriale Energiegewinnung. 30 % des Sauerstoffs werden für nicht-mitochondriale Prozesse verwendet. Der nicht-mitochondriale Sauerstoffverbrauch, unabhängig davon ob er für die Oberflächenzellatmung und/oder prooxidative Prozesse verwendet wird, wirkt sich negativ auf den BHI aus (siehe BHI). Ein Protonenleck ist deutlich erniedrigt vorhanden (16 %).

Empfehlung

Bestimmung von oxidierten Lipiden, Proteinen, nukleärer und mitochondrialer DNA in den Immunzellen zur Abschätzung des bereits erfolgten Schadens und zum gezielten Einsatz von Antioxidantien.

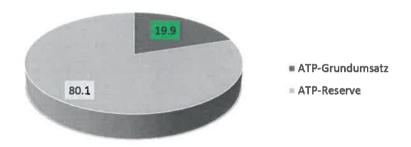
Bestimmung der intrazellulären reaktiven Sauerstoffmetaboliten zum gezielten Einsatz von Antioxidantien und/oder Therapeutika.

Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte Köni
9	

Välldiert von Prof. Dr. Brigitte König Ärztliche Leitung Prof. Dr. Gerhard Jorch

ATP-UMSATZ (MITOCHONDRIALE SAUERSTOFFVERWERTUNG)

Dieser Parameter gibt zum einen an, wieviel des insgesamt möglichen ATP-Umsatzes die Zelle in Ruhe bereits verbraucht (in %). Zum anderen gibt der Parameter die maximal mögliche mitochondriale Atmung der Immunzellen in Form von Sauerstoffverbrauch (pmol/min) und somit den insgesamt möglichen mitochondrialen ATP-Umsatz an.


Ursachen eines prozentualen hohen ATP-Grundumsatzes im Verhältnis zum insgesamt möglichen ATP-Umsatz sind zusätzlich zu oxidativen Vorgängen eine Belastung der Zelle mit spezifischen Inhibitoren der einzelnen Atmungskettenkomplexen, einer Belastung mit Toxinen (z.B. Lipopolysaccharid) und/oder mit Sauerstoffradikalen.

Ursachen eines insgesamt verringerten ATP-Reserve sind z. B. a) mangelnde Verwertung von Brennstoffen (Glukose, Fettsäuren); b) verminderte mitochondriale Masse (Anzahl an Mitochondrien); c) mangelnde Intaktheit der Komplexe der Elektronentransportkette; d) wechselnde Stoffwechsellage durch z. B. durch Aufgabenänderung der Immunzellen (z. B. Infektion (viral, bakteriell), Tumorabwehr, Autoimmunerkrankung).

optimal
Leicht erhöht
Moderat erhöht
stark erhöht

ATP-Umsatz in %

Parameter	Beurteilung	Referenzwerte	Ergebnis
ATP-Verbrauch für den Grundumsatz in %	optimal	0-20	19,94
•	Leicht erhöht	21-25	
	Moderat erhöht	26-35	
	Deutlich erhöht	36-45	
	Stark erhöht	>45	

Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte König
Ärztliche Leitung	Prof. Dr. Gerhard Jorch

Parameter	Beurteilung	Referenzwerte in pmol/min	Ergebnis in pmol/min
Mögliche maximale Sauerstoffverbrauchsrate in	optimal	>300	
pmol Sauerstoff/min	Leicht erniedrigt	200-300	
	Moderat erniedrigt	150-200	
	Stark erniedrigt	100-150	136,48
	Sehr stark erniedrigt	<100	

Interpretation Ihres Ergebnisses:

Ihre Immunzellen verwenden 19,9% ihrer möglichen Sauerstoffverwertungskapazität für ihren Basisenergiehaushalt. Dieser Wert ist als optimal anzusehen. Daraus lässt sich eine Belastung der Immunzellen herleiten, die die Zellregulation stört.

Die maximal verwertbare Sauerstoffmenge (in pmol Sauerstoff/min), die von den Mitochondrien überhaupt in Energie (ATP) umgewandelt werden kann, liegt bei 136,48 pmol/min. Diese mögliche Sauerstoffverbrauchsrate ist absolut gesehen als stark erniedrigt anzusehen. Bei Energieanforderung stehen nach Abzug des zellulären basalen Sauerstoffverbrauchs (27,22 pmol/min) noch 101,50 pmol Sauerstoff/min für die mitochondriale ATP-Generierung zur Verfügung. Damit ist die absolut mögliche ATP-Umsatzrate stark erniedrigt.

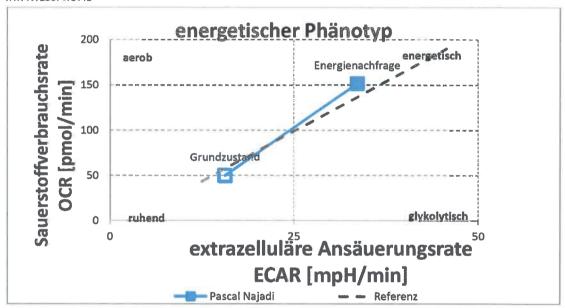
In der Zusammenschau der weiteren Ergebnisse können mehrere Faktoren allein oder in Kombination für die noch nicht optimale absolut mögliche ATP-Umsatzrate verantwortlich sein: a) eine zu geringe Mitochondrienmasse: b) die eingeschränkte Verwertung von Fettsäuren und insbesondere von Glukose; c) eine unzureichende Versorgung der Immunzellen mit notwendigen Mineralstoffen, Vitaminen usw.; d) defekte Elektronentransportkette.

Empfehlung

Bestimmung der Mitochondrienmasse (Mitochondrienanzahl) und Analyse von Mitochondrienmutationen, die die ATP-Generierung beeinflussen (z. B. common deletion mt4977bp; Vollsequenzierung).

Bestimmung von mitochondrialer Verwertung der Brennstoffe "Fettsäuren" und "Glukose".

B. Hosij


Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte König
Ärztliche Leitung	Prof Dr Gerhard Jorch

ZELLULÄRER ENERGIE-PHÄNOTYP

Zur Energieerzeugung stehen zwei Möglichkeiten zur Verfügung – die mitochondriale Atmung und die anaerobe Glykolyse. Welcher Weg der Energiegewinnung hauptsächlich bestritten wird, bestimmt den Energie-Phänotyp. Ein zellulärer Energie-Phänotyp umfasst den Phänotyp in Ruhe, den Phänotyp unter Energieanforderung und das Potential, entweder die mitochondriale Atmung oder die anaerobe Glykolyse bei Energieanforderung zu verwenden. Die Parameter des zellulären Energiephänotyps zeigen die Fähigkeit und/oder den bevorzugten Weg auf, den die Zellen zur Deckung des Energiebedarfs verwenden. Die nachfolgend aufgeführten Parameter sind ein sensibler früher Indikator für metabolische Veränderungen der Zellen bzw. deren Funktion bei Abwehrreaktionen.

IHR ERGEBNIS

IHR MESSPROFIL

IHR ERGEBNIS-PROFIL - ZELLULÄRER ENERGIE-PHÄNOTYP

In Ruhe	ruhend
Bei Energieanforderung	energetisch
Metabolisches Potenzial in % - Mitochondrien-	Leicht erniedrigt
Metabolisches Potenzial in % -Glykolyse-	Deutlich erniedrigt
	Moderate Bevorzugung der
Verhältnis Sauerstoffverbrauch/Glykolyse bei Energieanforderung	Mitochondrien

Patient	Pascal Najadi
Geburtsdatum	20.08.1967
Probennahme	27.02.2023
Probeneingang	28.02.2023
Untersuchungsende	28.02.2023
Endbefund	28.02.2023
Validiert von	Prof. Dr. Brigitte König
Ärztliche Leitung	Prof. Dr. Gerhard Jorch

BIOENERGETISCHER PHÄNOTYR

Parameter	Referenzwerte	Ergebnis	
Bioenergetischer Phänotyp in Ruhe	ruhend	ruhend	
Bioenergetischer Phänotyp bei Energieanforderung	Energetisch/aerob	energetisch	

Parameter	Beurteilung	Referenzwerte in %	Ergebnis in %
Metabolisches Potenzial in %	optimal	>350	
-Mitochondrien-	Leicht erniedrigt	300-350	303,41
	Moderat erniedrigt	250-300	
	Deutlich erniedrigt	200-250	
	Stark erniedrigt	<200	
Parameter	Beurteilung	Referenzwerte in %	Ergebnis in %
Metabolisches Potenzial in %	optimal	>350	
-Glykolyse-	Leicht erniedrigt	300-350	
	Moderat erniedrigt	250-300	
	Deutlich erniedrigt	200-250	215,03
	Stark erniedrigt	<200	
Parameter	Beurteilung	Referenzwerte	Ergebnis
Verhältnis Sauerstoffverbrauch/Glykolyse	Sehr starke Bevorzugung	>1,7	
bel Energieanforderung	der Mitochondrien		
	Starke Bevorzugung der Mitochondrien	1,5-1,7	
	Moderate Bevorzugung der Mitochondrien	1,3-1,5	1,41
	Leichte Bevorzugung der Mitochondrien	1,1-1,3	
	ausgeglichen	0,9-1,1	
	Leichte Bevorzugung der anaeroben Glykolyse	0,8-0,9	
	Moderate Bevorzugung der anaeroben Glykolyse	0,7-0,8	
	Starke Bevorzugung der anaeroben Glykolyse	0,5-0,7	
	Sehr starke Bevorzugung der anaeroben Givkolyse	<0,5	

 Patient
 Pascal Najadi

 Geburtsdatum
 20.08.1967

 Probennahme
 27.02.2023

 Probeneingang
 28.02.2023

 Untersuchungsende
 28.02.2023

 Endbefund
 28.02.2023

Validiert von Prof. Dr. Brigitte König Ärztliche Leitung Prof. Dr. Gerhard Jorch

Interpretation Ihres Ergebnisses zum zellulären Energie-Phänotyp:

Bei Immunzellen geht man davon aus, dass sie bei Energieanforderung die anaerobe Glykolyse und die Mitochondrien zu etwa gleichen Teilen benutzen.

Die Immunzellen haben eine ruhende Grundeinstellung. Dieses spricht gegen eine akute Entzündung/aktive chronische Entzündung. Insgesamt gesehen ist das metabolische Potenzial der Mitochondrien leicht erniedrigt (303,41%).

In der Zusammenschau aller Ergebnisse können mehrere Faktoren allein oder in Kombination für das herabgesetzte metabolische Potential verantwortlich sein: a) eine eingeschränkte Verwertung von Fettsäuren und insbesondere von Glukose; b) Fehlende mitochondriale Kofaktoren; c) oxidative Belastung; d) nicht voll funktionstüchtige Atmungskomplexe.

Empfehlung

Bestimmung von mitochondrialer Verwertung der Brennstoffe "Fettsäuren" und "Glukose".

Bestimmung von oxidierten Lipiden, Proteinen, nukleärer und mitochondrialer DNA in den Immunzellen zur Abschätzung des bereits erfolgten Schadens und zum gezielten Einsatz von Antioxidantien (siehe Kapitel "SAUERSTOFFVERBRAUCHSPROFIL").

Bestimmung der intrazellulären reaktiven Sauerstoffmetaboliten zum gezielten Einsatz von Antioxidantien und/oder Therapeutika (siehe Kapitel "SAUERSTOFFVERBRAUCHSPROFIL"). Überprüfung der einzelnen Atmungskomplexe zur gezielten individualisierten Therapie.

MMD GmbH & Co. KG Bretter Weg 10 a 39104 Magdeburg

B. Ron's